Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present best-fit values of porosity—and the corresponding effective thermal inertiae—determined from three different depths in Europa’s near-subsurface (∼1–20 cm). The porosity of the upper ∼20 cm of Europa’s subsurface varies between 75% and 50% (Γeff≈ 50–140 J m−2K−1s−1/2) on the leading hemisphere and 50%–40% (Γeff≈ 140–180 J m−2K−1s−1/2) on the trailing hemisphere. Residual maps produced by comparison with these models reveal thermally anomalous features that cannot be reproduced by globally homogeneous porosity models. These regions are compared to Europa’s surface terrain and known compositional variations. We find that some instances of warm thermal anomalies are co-located with known geographical or compositional features on both the leading and trailing hemisphere; cool temperature anomalies are well correlated with surfaces previously observed to contain pure, crystalline water ice and the expansive rays of Pwyll crater. Anomalous regions correspond to locations with subsurface properties different from those of our best-fit models, such as potentially elevated thermal inertia, decreased emissivity, or more porous regolith. We also find that ALMA observations at ∼3 mm sound below the thermal skin depth of Europa (∼10–15 cm) for a range of porosity values, and thus do not exhibit features indicative of diurnal variability or residuals similar to other frequency bands. Future observations of Europa at higher angular resolution may reveal additional locations of variable subsurface thermophysical properties, while those at other wavelengths will inform our understanding of the regolith compaction length and the effects of external processes on the shallow subsurface.more » « less
-
Abstract We present a thermal observation of Callisto's leading hemisphere obtained using the Atacama Large Millimeter/submillimeter Array at 0.87 mm (343 GHz). The angular resolution achieved for this observation was ∼0.″16, which for Callisto at the time of this observation (D∼ 1.″05) was equivalent to ∼six elements across the surface. Our disk-integrated brightness temperature of 116 ± 5 K (8.03 ± 0.40 Jy) is consistent with prior disk-integrated observations. Global surface properties were derived from the observation using a thermophysical model constrained by spacecraft data. We find that models parameterized by two thermal inertia components more accurately fit the data than single thermal inertia models. Our best-fit global parameters adopt a lower thermal inertia of 15–50 J m−2K−1s−1/2and a higher thermal inertia component of 1200–2000 J m−2K−1s−1/2, with retrieved millimeter emissivities of 0.89–0.91. We identify several thermally anomalous regions, including spots ∼3 K colder than model predictions colocated with the Valhalla impact basin and a complex of craters in the southern hemisphere; this indicates the presence of materials possessing either a higher thermal inertia or a lower emissivity. A warm region confined to the midlatitudes in these leading hemisphere data may be indicative of regolith property changes due to exogenic sculpting.more » « less
-
Abstract We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor. We measure temperatures of 432.3 ± 2.8, 355.6 ± 1.3, 317.9 ± 1.7, and 294.7 ± 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower-frequency Very Large Array observations suggests relatively warmer (∼7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements.more » « less
-
Abstract Recent field studies have shown that the presence of ash in the atmosphere can produce measurable attenuation of Global Positioning System (GPS) signals (Aranzulla et al., 2013,https://doi.org/10.1007/s10291-012-0294-4; Larson, 2013,https://doi.org/10.1002/grl.50556; Larson et al., 2017,https://doi.org/10.1016/j.jvolgeores.2017.04.005). The ability to detect plumes using GPS is appealing because many active volcanoes are already instrumented with high‐quality receivers. However, analyses using a Ralyeigh approximation have shown that the large attenuations cannot be explained by the scattering and absorption associated with ash or hydrometeors alone. Here, we show that the extinction of GPS signals, which fall into the L‐band of the electromagnetic spectrum, may be exacerbated significantly by excess surface charge on pyroclasts. Indeed, volcanic eruptions are often accompanied by a range of electrostatic processes, leading, in some cases, to spectacular lightning storms. We use a modified Mie scattering model to demonstrate that electrostatic effects can increase the extinction of L‐band radiation by up to an order of magnitude, producing attenuations consistent with those observed in the field. Thus, future work involving GPS as a tool to remotely probe plumes must take into account the electrification of ash in radiative transfer models. Additionally, we propose that the sensitivity of GPS to particle charging may catalyze the development of new techniques to explore electrostatic processes in plumes, especially if GPS measurements are complemented with millimeter‐wave RADAR measurements.more » « less
An official website of the United States government
